
A Logical Characterization for Dense-time
Visibly Pushdown Automata

Devendra Bhave, Vrunda Dave, Shankara Narayanan Krishna, Ramchandra
Phawade, and Ashutosh Trivedi

Indian Institute of Technology Bombay, India
{devendra, vrunda, krishnas, ramchandra, trivedi}@cse.iitb.ac.in

Abstract. Two of the most celebrated results that effectively exploit
visual representation to give logical characterization and decidable model-
checking include visibly pushdown automata (VPA) by Alur and Mad-
husudan and event-clock automata (ECA) by Alur, Fix and Henzinger.
VPA and ECA—by making the call-return edges visible and by making
the clock-reset operation visible, respectively—recover decidability for
the verification problem for pushdown automata implementation against
visibly pushdown automata specification and timed automata implemen-
tation against event-clock timed automata specification, respectively. In
this work we combine and extend these two works to introduce dense-time
visibly pushdown automata that make both the call-return as well as
resets visible. We present MSO logic characterization of these automata
and prove the decidability of the emptiness problem for these automata
paving way for verification problem for dense-timed pushdown automata
against dense-timed visibly pushdown automata specification.

Keywords: visibly pushdown, event-clock, logical characterization

1 Introduction

Timed automata [2] are simple yet powerful generalization of finite automata
where a finite set of continuous variables with uniform rates, aptly named
clocks, are used to measure critical timing constraints among various events by
permitting reset of these clocks to remember occurrence of an event. Due to
the carefully crafted dynamics, the emptiness of timed automata is a decidable
problem using a technique known as region-construction that computes time-
abstract finitary bisimulation of the automata. While, timed automata are closed
under union and intersection, they are not closed under complementation and
determinization. For this reason it is not possible to verify timed automata
implementation against specifications given as timed automata. Event-clock
automata [3] are a determinizable subclass of timed automata that enjoy a nice set
of closure properties: they are closed under union, intersection, complementation,
determinization, and projection. Event-clock automata achieve the closure under
determinization by making clock resets visible—the reset of each clock variable
is determined by a fixed class of event and hence visible just by looking at the

2 Bhave et al.

input word. Partially thanks to these closure properties, they are known to be
precisely capture timed languages defined by an appropriate class of monadic
second-order logic [6].

Recursive timed automata (RTA) [7] and dense-time pushdown automata
(dtPDA) [1] are generalization of timed automata that accept certain real-time ex-
tensions of context-free languages. In general, the emptiness problem for the RTA
in undecidable, however [7] characterizes classes of RTA with decidable emptiness
problem. The emptiness problem for the dtPDA is known to be decidable. RTA
and dtPDA naturally model the flow of control in time-critical software systems
with potentially recursive procedure calls. Alur and Madhusudan [4] argued the
need for context-free (representable using pushdown automata) specification
while verifying systems modeled as pushdown systems. The goal of this paper is
to develop decidable verification framework for RTA and dtPDA by introducing
an appropriate class of specification formalism for context-free and time-critical
properties that permit decidable verification.

Non-closure under determinization and complementation makes verification
against general context-free specification impossible. Alur and Madhusudan [4]
introduced visibly pushdown automata as a specification formalism where the call
and return edges are made visible in a structure of the word. This visibility enabled
closure of these automata under determinization and hence complementation, and
allowed them to be used in a decidable verification framework. Also, again owing
to these closure properties, visibly pushdown automata are known to precisely
capture the context-free languages definable by an appropriate class of monadic
second order (MSO) logic [4].

In this paper we present dense-time visibly pushdown automata (dtVPA)
that form a subclass of dense-time pushdown automata of Abdulla, Atig, and
Stenman [1] and generalize both visibly pushdown automata and event-clock
automata. We show that dtVPA are determinizable and are closed under Boolean
operations (union, intersection, and complementation) as well as projection. We
build on these closure properties to give a logical characterization of the timed
languages captured by dtVPA.

Related Work. Tang and Ogawa in [8] proposed a model called event-clock visibly
pushdown automata (ECVPA) that generalized both ECA and VPA. For the
proposed model they showed determinizability as well as closure under boolean
operations, and proved the decidability of the verification problem for timed
visibly pushdown automata against such event-clock visibly pushdown automata
specifications. However, unlike dtVPAs, ECVPAs do not permit pushing the clocks
on the stack and hence dtVPA capture a larger specification class than ECVPA.
Moreover [8] did not explore any logical characterization of ECVPA. Our paper
builds upon the ideas presented in D’Souza [6] for event-clock automata and
Alur and Madhusudan [4] to present a visualized specification framework for
dense-time pushdown automata. For the decidability of the emptiness problem,
we exploit the recent untiming construction proposed by Clemente and Lasota [5].
For a survey of models related to recursive timed automata and dense-time
pushdown automata we refer the reader to [7] and [1].

Dense-time Visibly Pushdown Automata 3

2 Preliminaries

A finite timed word over Σ is a sequence (a1, t1), (a2, t2), ..., (an, tn) ∈ (Σ×R≥0)∗

such that ti ≤ ti+1 for all 1 ≤ i ≤ n− 1. Alternatively, we can represent timed
words as tuple (〈a1, . . . , an〉, 〈t1, . . . , tn〉). We use both of these formats depending
on technical convenience. We represent the set of finite timed words over Σ by
TΣ∗. Before we introduce dtVPA in the next section, we briefly recall the basic
notions of event-clock automata and visibly pushdown automata.

Event-Clock Automata. Event-clock automata (ECA) [3] are a determinizable
subclass of timed automata [2] that for every action a ∈ Σ implicitly associate
two clocks xa and ya, where the “recorder” clock xa records the time of the last
occurrence of action a, and the “predictor” clock ya predicts the time of the next
occurrence of action a. Hence, event-clock automata do not permit explicit reset
of clocks and it is implicitly governed by the input timed word. This property
makes ECA determinizable and closed under all Boolean operations. However,
ECAs are not closed under projection.

In order to develop a logical characterization of ECA D’Souza [6] required a
class of ECA that is closed under projections. For this purpose, he introduced
an equi-expressive generalization of event-clock automata – called quasi-event
clock automata (qECA) – where event recorders and predictors are associated
with a set of actions rather than a single action. Here, the finite alphabet Σ is
partitioned into finitely many classes via a ranking function ρ : Σ → N giving
rise to finitely many partitions P1, . . . , Pk of Σ where Pi = {a ∈ Σ | ρ(a) = i}.
The event recorder xPi

records the time elapsed since the last occurrence of some
action in Pi, while the event predictor yPi predicts the time required for any
action of Pi to occur.

Notice that since clock resets are “visible” in input timed word, the clock
valuations after reading a prefix of the word is also determined by the timed
word. For example, for a timed word w = (a1, t1), (a2, t2), . . . , (an, tn), the value
of the event clock xρ(a) at position j is tj − ti where i is the largest position
preceding j where an action of Pρ(a) has occurred. If no symbols from Pρ(a) have
occurred before the jth position, then the value of xρ(a) is undefined denoted by
a special symbol `. Similarly, he value of yρ(a) at position j of w is undefined if
no symbols of Pρ(a) occur in w after the jth position. Otherwise, it is defined
as tk − tj , where k is the first position after j where a symbol of Pρ(a) occurs.
We write Cρ for the set of all event clocks for a ranking function ρ and we use
R`>0 for the set R>0 ∪ {`}. Formally, the clock valuation after reading j-th prefix
of the input timed word w, νwj : Cρ 7→ R`>0, is defined in the following fashion:
νwj (xq) = tj−ti if there exists an 0≤i<j such that ρ(ai) = q and ak /∈ Pq for all
i<k<j, otherwise νwj (xq) = ` (undefined). Similarly, νwj (yq) = tm − tj if there is
j<m such that ρ(am) = q and al /∈ Pq for all j<l<m, otherwise νwj (yq) = `.

A quasi-event clock automaton [6] is a tuple A = (L,Σ, ρ, L0, F, E) where
L is a set of finite locations, Σ is a finite alphabet, ρ is the alphabet ranking
function, L0 ∈ L is the set of initial locations, F ∈ L is the set of final locations,
and E is a finite set of edges of the form (`, `′, a, ϕ) where `, `′ are locations,

4 Bhave et al.

a ∈ Σ, and ϕ is a clock constraint over the clocks Cρ. A clock constraint over Cρ
is a boolean combination of constraints of the form z ∼ c where z ∈ Cρ, c ∈ N
and ∼∈ {≤,≥}. Event clock automata are a special kind of quasi-event clock
automata when the ranking function ρ is a one-to-one function.

Theorem 1 (ECA [3, 6]). Quasi event-clock automata and event-clock automata
are equi-expressive. Quasi event-clock automata are determinizable and closed
under Boolean operations, concatenation, Kleene closure, and projection. The
language accepted by (quasi) event-clock automata can be characterized by MSO
logic over timed words augmented with timed modalities.

Visibly Pushdown Automata. Visibly pushdown automata [4] are a determinizable
subclass of pushdown automata that operate over words that dictate the stack
operations. This notion is formalized by giving an explicit partition of the alphabet
into three disjoint sets of call, return, and local symbols and the visibly pushdown
automata must push one symbol to stack while reading a call symbol, and must
pop one symbol (given stack is non-empty) while reading a return symbol, and
must not touch the stack while reading the local symbol.

A visibly pushdown alphabet is a tuple Σ = 〈Σc, Σr, Σl〉 where Σ is parti-
tioned into a call alphabet Σc, a return alphabet Σr, and a local alphabet Σl.
A visibly pushdown automata over Σ = 〈Σc, Σr, Σl〉 is a tuple (L,Σ, Γ, L0, δ, F)
where L is a finite set of locations including a set L0 ⊆ L of initial loca-
tions, a finite stack alphabet Γ with special end-of-stack symbol ⊥, and ∆ ⊆
(L×Σc×L×(Γ\⊥)) ∪ (L×Σr×Γ×L) ∪ (L×Σl×L) and F ⊆ L is final locations.

Theorem 2 (VPA [4]). Visibly pushdown automata are determinizable and
closed under Boolean operations, concatenation, Kleene closure, and projection.
The language accepted by visibly pushdown automata can be characterized by MSO
logic over words augmented with binary matching predicate.

3 Dense-time Visibly Pushdown Automata (dtVPA)

We introduce the dense-time visibly pushdown automata as an event-clock
automaton equipped with a timed stack along with visibly pushdown alphabet
Σ = 〈Σc, Σr, Σl〉. For notational convenience, we assume that the partitioning
function is one-to-one, i.e. each symbol a ∈ Σ has unique recorder xa and
predictor ya clocks assigned to it. This permits us to drop the ranking function
ρ for the further discussion. Let CΣ (or C when Σ is clear) be a finite set of
event clocks. Let Φ(C) be the set of clock constraints over C and I be the set of
intervals of the form 〈a, b〉 with a ∈ N, a ≤ b and b ∈ N ∪ {∞}.

Syntax. A dense-time visibly pushdown automata over Σ= {Σc, Σr, Σl} is a
tuple M=(L,Σ, Γ, L0, F,∆ = ∆c ∪∆r ∪∆l), where L is a finite set of locations
including a set L0 ⊆ L of initial locations, Γ is a finite stack alphabet with
special end-of-stack symbol ⊥, ∆c = (L×Σc×Φ(C)×L×(Γ\⊥)) is the set of
call transitions, ∆r = (L×Σr×I×Γ×Φ(C)×L) is the set of return transitions,
∆l = (L×Σl×Φ(C)×L) is the set of local transitions, and F ⊆ L is a set of final
locations.

Dense-time Visibly Pushdown Automata 5

Semantics. Let w = (a0, t0), . . . , (an, tn) be a timed word. A configuration of
the dtVPA is a tuple (`, νwi , (γσ, age(γσ))) where ` is the current location of
the dtVPA, νwi gives the valuation of all the event clocks at position i ≤ |w|,
γσ ∈ ΓΓ ∗ is the content of the stack with γ being the topmost symbol and σ is
the string representing the stack content below γ, while age(γσ) is a sequence
of real numbers encoding the ages of all the stack symbols (the time elapsed
since each of them was pushed on to the stack). We follow that assumption
that that age(⊥) = 〈`〉 (undefined). If for some string σ ∈ Γ ∗ we have that
age(σ) = 〈t1, t2, . . . , tn〉 and for τ ∈ R≥0 we write age(σ) + τ for the sequence
〈t1 + τ, t2 + τ, . . . , tn + τ〉. For a sequence σ = 〈γ1, . . . , γn〉 and a member γ we
write γ :: σ for 〈γ, γ1, . . . , γn〉.

The run of a dtVPA on w = (a0, t0), . . . , (an, tn) is a sequence of configuratio-
ns (`0, ν

w
0 , (〈⊥〉, 〈`〉)), (`1, νw1 , (σ1, age(σ1))), . . . , (`n+1, ν

w
n+1, (σn+1, age(σn+1)))

where `i ∈ L, σi ∈ Γ ∪ {⊥}, `0 ∈ L0, and for each i, 0 ≤ i ≤ n, we have:

– If ai ∈ Σc, then there is a transition (`i, ai, ϕ, `i+1, γ)∈∆ s.t. νwi |= ϕ. The
symbol γ ∈ Γ\{⊥} is then pushed onto the stack, and its age is initialized to
zero, obtaining (σi+1, age(σi+1)) = (γ :: σi, 0 :: (age(σi) + (ti − ti−1))). Note
that all symbols in the stack excluding the topmost age by ti − ti−1.

– If ai ∈ Σr, then there is a transition (`i, ai, I, γ, ϕi, `i+1) ∈ ∆. The configura-
tion (`i, νi, (σi, age(σi))) evolves to (`i+1, νi+1, (σi+1, age(σi+1))) iff νwi |= ϕi,
σi = γ :: κ ∈ ΓΓ ∗ and age(γ) + (ti − ti−1) ∈ I. Then we obtain σi+1 = κ,
with age(σi+1) = age(κ) + (ti− ti−1). However, if γ = 〈⊥〉, the symbol is not
popped, and the attached interval I is irrelevant.

– If ai ∈ Σl, then there is a transition (`i, ai, ϕi, `i+1) ∈ ∆ such that νwi � ϕi. In
this case stack remains unchanged i.e. σi = σi+1, and age(σi+1) = age(σi) +
(ti − ti−1). All symbols in the stack age by ti − ti−1.

A run ρ of a dtVPA M is accepting if it terminates in a final location. A
timed word w is an accepting word if there is an accepting run of M on w. The
language L(M) of a dtVPA M , is the set of all timed words w accepted by M .

Example 3. Consider the timed languages of the form anbcnd where the first
c comes precisely 1 time-unit after last a and the first a and the last c are 2
time-units apart, and every other matching a and c are within (1, 2) time-unit
apart, i.e.

{
(anbcnd, 〈t1, . . . , tn, t, t′n, . . . , t′1, t′〉) | t′n− tn = 1, t′1− t1 = 2, t′i− ti ∈

(1, 2) for all i≤n
}
. Given a partition Σc = {a}, Σl = {b, d}, Σr = {c} and

Γ = {α} this language can be accepted by the dtVPA shown in below.

l0start l1 l2 l3 l4

a, push(α)

b c, xb≤1, pop(α)∈[1, 1]

c, pop(α) ∈ (1, 2)

c, pop(α)∈[2, 2] d, pop(⊥)

Here l0 is the initial location and l4 is only accepting location. The transitions rela-
tion contains the following transitions: the call transition (l0, a, true, l0, α) ∈ ∆c,
the local transition (l0, b, true, l1) ∈ ∆l and the following set of return tran-
sitions (l1, c, [1, 1], α, xb ≤ 1, l2), (l2, c, (1, 2), α, true, l2), (l2, c, [2, 2], α, true, l3),

6 Bhave et al.

(l3, d, true,⊥, true, l4) ∈ ∆r. In the figure we have not shown clock constraints
that evaluate to true and we have depicted testing the age of the top symbol as
pop(·) ∈ I.

Deterministic dtVPA. A dtVPA M = (L,Σ,L0, F,∆) is said to be deterministic
if it has exactly one start location, and for every configuration and input action
exactly one transition is enabled. Formally, we have the following conditions:
for every (`, a, φ1, `

′, γ1), (`, a, φ2, `
′′, γ2) ∈ ∆c, φ1 ∧ φ2 is unsatisfiable; for every

(`, a, I1, γ, φ1, `
′), (`, a, I2, γ, φ2, `

′′) ∈ ∆r, either φ1∧φ2 is unsatisfiable or I1∩I2 =
∅; and for every (`, a, φ1, `

′), (`, a, φ2, `
′) ∈ ∆l, φ1 ∧ φ2 is unsatisfiable.

The following is one of the central of the paper.

Theorem 4 (Determinizability, Emptiness and Closure). Dense-time vis-
ibly pushdown automata are determinizable and closed under Boolean operations,
concatenation, Kleene closure and projection. Their emptiness is also decidable.

The proofs for the union, intersection, concatenation, and Kleene closure are
straightforward extensions of the closure of visibly pushdown automata and
event-clock automata under these operations. The proof for the determinizability
(and hence the complementation) is slightly more involved. In the next section we
present a proof for the determinizability as well as decidability of the emptiness
problem for dtVPA. Section 5 presents a logical characterization of dtVPA.

4 Untiming the Stack in dtVPA

Event-clock visibly-pushdown automata (ECVPA) [8] can be considered as sub-
classes of dtVPA where the ages are not pushed on the stack. Hence a dtVPA
M = (L,Σ,L0, F,∆) is an ECVPA if for every (`, a, I, γ, φ, `′) ∈ ∆r we have that
I = [−∞,+∞]. Tang and Ogawa, in [8], proved the following for ECVPA.

Theorem 5. ECVPAs are determinizable and closed under Boolean operations.

We now describe the untiming-the-stack construction to obtain from a dtVPA M
over Σ, an ECVPAM ′ over an extended alphabet Σ′ such that L(M) = h(L(M ′))
where h is a homomorphism h : Σ′ × R≥0 → Σ × R≥0 defined as h(a, t) = (a, t)
for a ∈ Σ and h(a, t) = ε for a /∈ Σ. Our construction builds upon that of [5].
However, [5] cannot directly be used here since [5] introduces extra clocks that
require resets which is not available under event-clock restriction.

Given a dtVPA M , let k be the maximum constant used in any interval I to
check the age of a popped symbol. We first explain the proof idea. Consider the
first call transition (l, a, ϕ, l′, γ) encountered in M . To construct an ECVPA M ′

from M , we guess the interval used in a constraint in return transition when
γ will be popped from the stack. Assume the guess is an interval of the form
[0, κ). This amounts to checking that the age of γ at the time of popping is <κ.
In M ′, the control switches from l to the location (l′a,<κ, {<κ}), and the symbol
(γ,<κ, first) is pushed onto the stack.

Dense-time Visibly Pushdown Automata 7

Let Z∼k = {∼ c | c ∈ N, c ≤ k,∼∈ {<,≤, >,≥,=}}. Then the extended
alphabet Σ′ = Σ ∪ Z∼k . All symbols of Z∼k are local symbols in M ′. Σ′ =
(Σc, Σl ∪ Z∼k , Σr). At (l′a,<κ, {<κ}), the new symbol <κ is read and we have
the following transition : ((l′a,<κ, {<κ}), <κ, xa = 0, (l′, {<κ})), which results
in resetting the event recorder x<κ corresponding to the new symbol <κ. The
constraint xa = 0 ensures that no time is elapsed by the new transition. The
information <κ is retained in the control state until (γ,<κ, first) is popped.
At (l′, {<κ})), we continue the simulation of M from l′. Assume that we have
another push operation at l′ of the form (l′, b, ψ, q, β). In M ′, from (l′, {<κ}), we
first guess the constraint that will be checked when β will be popped from the
stack. If the guessed constraint is again <κ, then control switches from (l′, {<κ})
to (q, {<κ}), and (β,<κ,−) is pushed onto the stack and simulation continues
from (q, {<κ}). However, if the guessed pop constraint is <ζ for ζ 6= κ, then
control switches from (l′, {<κ}) to (qb,<ζ , {<κ,<ζ}). The new obligation <ζ
is also remembered in the control state. From (qb,<ζ , {<κ,<ζ}), we read the
new symbol <ζ which resets the event predictor x<ζ and control switches to
(q, {<κ,<ζ}), pushing (β,<ζ, first) on to the stack. The idea thus is to keep
the obligation <κ alive in the control state until γ is popped; the value of x<κ at
the time of the pop determines whether the pop is successful or not. If a further
<κ constraint is encountered while the obligation <κ is already alive, then we do
not reset the event clock x<κ. The x<κ is reset only at the next call transition
after (γ,<κ, first) is popped, when <κ is again guessed.

The case when the guessed popped constraint is of the form >κ is similar. In
this case, each time the guess is made, we reset the event recorder x>κ at the
time of the push. If the age of a symbol pushed later is >κ, so will be the age of
a symbol pushed earlier. In this case, the obligation >κ is remembered only in
the stack. Handling guesses of the form ≥ ζ∧ ≤ κ is similar, and we combine the
ideas discussed above.

Now consider a return transition (l, a, I, γ, ϕ, l′) in M . In M ′, we are at some
control state (l, P). On reading a, we check the top of stack symbol in M ′. It is of
the form (γ, S, first) or (γ, S,−), where S is either a singleton set of the form
{<κ} or {>ζ}, or a set of the form {<κ,>ζ}. Consider the case when the top of
stack symbol is (γ, {<κ,>ζ}, first). In M ′, on reading a, the control switches
from (l, P) to (l′, P ′) for P ′ = P\{<κ} iff

1. The guard ϕ evaluates to true.

2. the interval I is (ζ, κ). This validates our guess made at the time of push.

3. The value of clock x<κ is <κ, and the value of clock x>ζ is >ζ.

4. Note that the third component first says that there aren’t any symbols in
the stack below (γ, {<κ,>ζ}, first) whose pop constraint is <κ. Hence, we
can remove the obligation <κ from P in the control state.

5. If the top of stack symbol was (γ, {<κ,>ζ},−), then we know that the
pop constraint <κ is still alive. That is, there is some stack symbol below
(γ, {<κ,>ζ},−) of the form (β, S, first) such that <κ ∈ S. In this case, we
keep P unchanged and control switches to (l′, P).

8 Bhave et al.

To formalize the construction, given M = (L,Σ, Γ, L0, F,∆) with max con-
stant k used in return transitions, we construct M ′ = (L′, Σ′, Γ ′, L′0, L′f , δ′)
where L′ = (L× 2Z

∼
k) ∪ (LΣ×Z∼

k
× 2Z

∼
k) ∪ (LΣ×Z∼

k ×Z
∼
k
× 2Z

∼
k), Σ′ = (Σc, Σl ∪

Z∼k , Σr), Γ
′ = Γ × 2Z

∼
k ×{first,−}, L0 = {(l0, ∅) | l0 ∈ L0}, and F = {(lf , ∅) |

lf ∈ F}. The transitions ∆′ are defined below. Let (l, a, ϕ, l′, γ) ∈ ∆c. Then we
have the following transitions in M ′.

1. ((l, P), a, ϕ, (l′, P), (γ, {<κ},−)) ∈ ∆′c if <κ ∈ P
2. ((l, P), a, ϕ, (l′a,<κ, P

′), (γ, {<κ}, first)) ∈ ∆′c if <κ /∈ P . P ′ = P ∪ {<κ}.
3. ((l′a,<κ, P

′), <κ, xa = 0, (l′, P ′)) ∈ ∆′l.
These transitions consider the guessed pop constraint as <κ. In the first case,
<κ is alive, and hence there is no need to reset the clock x<κ. In the second
case, the obligation <κ is fresh. Hence it is remembered as first in the stack,
and the clock x<κ is reset.

4. ((l, P), a, ϕ, (l′a,>κ, P), (γ, {>κ},−)) ∈ ∆′c.
5. ((l′a,>κ, P), >κ, xa = 0, (l′, P)) ∈ ∆′l.

These transitions consider the case when the guessed pop constraint is >κ.
The clock x>κ is reset, and the obligation is remembered in the stack.

6. ((l, P), a, ϕ, (l′a,<κ,>ζ , P
′), (γ, {<κ,>ζ}, first)) ∈ ∆′c if <κ /∈ P . P ′ = P ∪

{<κ,>ζ}.
7. ((l′a,<κ,>ζ , P

′), >ζ, xa = 0, (l′a,<κ, P
′)) ∈ ∆′l.

8. ((l, P), a, ϕ, (l′a,>ζ , P), (γ, {<κ,>ζ},−)) ∈ ∆′c if <κ ∈ P .
These transitions consider the case when the guessed pop constraint is >ζ
and <κ. Depending on whether <κ is alive or not, we have two cases. If alive,
then we simply reset the clock x>ζ and remember both the obligations in the
stack. If <κ is fresh, then we reset both clocks x>ζ and x<κ and remember
both obligations in the stack, and <κ in the control state.

Let (l, a, ϕ, l′) ∈ ∆l. Then we have the transitions ((l, P), a, ϕ, (l′, P)) ∈ ∆′l.
Next we consider return transitions. Let (l, a, I, γ, ϕ, l′) ∈ ∆r. Then we have the
following transitions in ∆′r.

1. ((l, P), a, (γ, {<κ,>ζ},−), ϕ ∧ x<κ<κ ∧ x>ζ>ζ, (l′, P)) if I = (ζ, κ).
2. ((l, P), a, (γ, {<κ,>ζ}, first), ϕ ∧ x<κ<κ ∧ x>ζ>ζ, (l′, P ′))

where P ′ = P\{<κ}, if I = (ζ, κ).
3. ((l, P), a, (γ, {<κ},−), ϕ ∧ x<κ<κ, (l′, P)) if I = [0, κ).
4. ((l, P), a, (γ, {<κ}, first), ϕ ∧ x<κ<κ, (l′, P ′)) where P ′ = P\{<κ}, if I =

[0, κ).
5. ((l, P), a, (γ, {>ζ},−), ϕ ∧ x>ζ>ζ, (l′, P)) if I = (ζ,∞).

For the pop to be successful in M ′, the guess made at the time of the push
must be correct, and indeed at the time of the pop, the age must match the
constraint. The control state (lf , P) is reached in M ′ on reading a word w′

iff M accepts a string w and reaches lf . Accepting locations of M ′ are of the
form (lf , P) for P ⊆ Z∼k . For any w = (a1, t1) . . . (an, tn) ∈ L(M), we have
w′ = (a1, t1)T1(a2, t2)T2 . . . (antn)Tn accepted by L(M ′), where for 1 ≤ l ≤ n,
|Tl| ≤ 2k, and Tl is a timed word (b1, tl) . . . (bj , tl) where j ≤ 2k and bi ∈ Z∼k for
1 ≤ i ≤ j and the only time stamp used in Ti is ti, since no time elapses in M ′

while remembering obligations and resetting the appropriate clocks.

Dense-time Visibly Pushdown Automata 9

Emptiness and Determinizability. In the construction above, it can shown by
inducting on the length of words accepted that h(L(M ′)) = L(M). Thus, L(M ′) 6=
∅ iff L(M) 6= ∅. Since M ′ is ECVPA, we can apply the standard region construction
of event clock automata [3] to obtain a PDA preserving emptiness.

Next, we focus on the determinizability problem for dtVPA. We start with
a dtVPA M = (L,Σ, Γ, L0, F,∆) with n locations, with max constant k used in
the intervals of return transitions. Let χ = max(|Σ|, |Z∼k |). The deterministic
dtVPA M ′′ corresponding to a dtVPA M is obtained as follows:
(1) Obtain a ECVPA M ′ as seen in section 4. Note that L(M) = h(L(M ′)), and
M ′ = (L′, Σ, Γ ′, L′0, F ′, ∆′) with |L′| ≤ χ3.2|Z

∼
k |. Let π = χ3.2|Z

∼
k |.

(2) Use [8] to obtain a deterministic ECVPA Det(M ′). This construction uses the

determinization of VPA [4], which results in O(2π
2

) locations in Det(M ′).
(3) Construct the deterministic dtVPA M ′′ from Det(M ′) as explained below. No
blow up in the locations and transitions are incurred in this construction. We thus
obtain a deterministic dtVPA M ′′ with at most 2π

2

locations. The construction
of M ′′ is explained below.

Consider a dtVPA M = (L,Σ, Γ, L0, F,∆) and the corresponding ECVPA
M ′ = (L′, Σ′, Γ ′, L′0, F ′, ∆′) as constructed in section 4. From Theorem 5 we
know thatM ′ is determinizable. LetDet(M ′) be the determinized automaton such
that L(Det(M ′)) = L(M ′). That is, L(M) = h(L(Det(M ′))). By construction of
M ′, we know that the new symbols introduced in Σ′ are Z∼k (Σ′ = Σ ∪Z∼k) and
(i) no time elapse happens on reading these symbols, and (ii) no stack operations
happen on reading these symbols. Consider any transition in Det(M ′) involving
the new symbols. Since Det(M ′) is deterministic, let (s1, α, ϕ, s2) be the unique
transition on α ∈ Z∼k . In the following, we eliminate these transitions on Z∼k
preserving the language accepted by M and the determinism of det(M ′). In doing
so, we will construct a dtVPA M ′′ which is deterministic, and which preserves
the language of M . We now analyze various types for α ∈ Z∼k .

Assume that α is of the form >ζ. Let (s1, α, ϕ, s2) be the unique transition
on α ∈ Z∼k . By construction of M ′ (and hence det(M ′)), we know that ϕ has
the form xa = 0 for some a ∈ Σ. We also know that in Det(M ′), there is a
unique transition (s0, a, ψ, s1, (γ, α,−)) preceding (s1, α, ϕ, s2). Since (s1, α, ϕ, s2)
is a no time elapse transition, and does not touch the stack, we can combine
the two transitions from s0 to s1 and s1 to s2 to obtain the call transition
(s0, a, ψ, s2, (γ, α,−)). This eliminates transition on >ζ.

Assume that α is of the form <κ. Let (s1, α, ϕ, s2) be the unique transition
on α ∈ Z∼k . We know that ϕ has the form xa = 0 for some a ∈ Σ. From M ′, we
also know that in Det(M ′), there is a unique transition of one of the following
forms preceding (s1, α, ϕ, s2).

(a) (s0, a, ψ, s1, (γ, α,−))
(b) (s0, a, ψ, s1, (γ, α, first))
(c) (s0, >ζ, ϕ, s1). (s0, >ζ, ϕ, s1) is preceded by (s′0, a, ψ, s0, (γ, {α,>ζ}, X)) for

X ∈ {first,−}.

Since (s1, α, ϕ, s2) is a no time elapse transition, and does not touch the stack,
we can combine the two transitions from s0 to s1 (cases (a), (b)) and s1 to s2

10 Bhave et al.

to obtain the call transition (s0, a, ψ, s2, (γ, α,−)) or (s0, a, ψ, s2, (γ, α, first)).
This eliminates the transition on <κ. In case of transition (c), we first eliminate
the local transition on >ζ obtaining (s′0, a, ψ, s1, (γ, {α,>ζ}, X)) and then obtain
the call transitions (s′0, a, ψ, s2, (γ, {α,>ζ}, X)). We have thus eliminated local
transitions on <κ.

Merging transitions as done here does not affect transitions on Σ; they simply
eliminate the newly added transitions on Σ′−Σ. Recall that checking constraints
on these clocks were required on popping the stack. We now modify the pop
operations in Det(M ′) as follows: Return transitions have the following forms,
and in all of these, ϕ is a constraint checked on the clocks of CΣ in M during
pop.

– (s, a, (γ, {<κ}, X), ϕ ∧ x<κ<κ, s′), for X ∈ {−, first}. This is modified to
(s, a, [0, κ), (γ, {<κ}, X), ϕ, s′).

– (s, a, (γ, {<κ,>ζ}, X), ϕ ∧ x>ζ>ζ ∧ x<κ<κ, s′) for X ∈ {−, first}. This is
modified to (s, a, (ζ, κ), (γ, {<κ,>ζ}, X), ϕ, s′).

– (s, a, (γ, {>ζ},−), ϕ ∧ x>ζ>ζ, s′). This is modified to
(s, a, (ζ,∞), (γ, {>ζ},−), ϕ, s′).

Thus, we obtain a deterministic dtVPA M ′′ from det(M ′) such that L(M ′′) =
L(M) and h(L(M ′′)) = L(det(M ′)).

5 Logical Characterization of dtVPA

Monadic Second-Order Logic on Timed Words. We consider a timed word w =
(a0, t0), (a1, t1), . . . , (am, tm) over Σ as a word structure over the universe U =
{1, 2, . . . , |w|} of positions in the timed word. The predicates in the word structure
are Qa(i) which evaluates to true at position i iff w[i] = a, where w[i] denotes
the ith position of w. Following [4], we use the matching binary relation µ(i, j)
which evaluates to true iff the ith position is a call and the jth position is its
matching return. We also introduce three predicates Ca, Ba, and θ capturing the
following relations. For an interval I, the predicate Ca(i) ∈ I evaluates to true
on the word structure iff νwi (xa) ∈ I for recorder clock xa. For an interval I, the
predicate Ba(i) ∈ I evaluates to true on the word structure iff νwi (ya) ∈ I for
predictor clock ya. For an interval I, the predicate θ(i) ∈ I evaluates to true
on the word structure iff w[i] ∈ Σr, and there is some k < i such that µ(k, i)
evaluates to true and ti − tk ∈ I. The predicate θ(i) measures the time elapse
between position k where a call was made, and position i, its matching return.
This time elapse is the age of the symbol pushed on to the stack during the call
at position k. Since position i is the matching return, this symbol is popped at
position i; if the age lies in the interval I, the predicate evaluates to true. We
define MSO(Σ), the MSO logic over Σ, as:

ϕ := Qa(x) | x∈X | µ(x, y) |Ca(x)∈I |Ba(x)∈I | θ(x)∈I | ¬ϕ | ϕ∨ϕ | ∃x.ϕ | ∃X.ϕ

where a∈Σ, xa∈CΣ , x is a first order variable and X is a second order variable.
The models of a formula φ ∈ MSO(Σ) are timed words w over Σ. The semantics

Dense-time Visibly Pushdown Automata 11

of these logic is standard where first order variables are interpreted over positions
of w and second order variables over subsets of positions. As an example consider
the formula ϕ = ∀x(Qa(x)→ ∃y[Qc(y)∧ θ(y) ∈ (1, 2)]) over Σ = ({a}, {b}, {c})).
It expresses that for every a ∈ Σc, there exists a c ∈ Σr as the matching return
such that the time elapse between the call and return is in the interval (1, 2). The
word w = (a, 0)(a, 0.2)(b, 0.5)(c, 1.3)(b, 1.7)(b, 1.9)(c, 1.99) satisfies ϕ. We define
the language L(ϕ) of an MSO sentence ϕ as the set of all words satisfying ϕ.

Logic to automata. We first show that for any MSO formula ϕ over Σ =
(Σc, Σl, Σr), L(ϕ) is accepted by a dtVPA. Let Z = (x1, . . . , xm, X1, . . . , Xn) be
the free variables in ϕ. We work on the extended alphabet Σ′ = (Σ′c, Σ

′
l , Σ

′
r)

where Σ′s=Σs×(V al : Z → {0, 1}m+n), for s ∈ {c, l, r}. A word w′ over Σ′

encodes a word over Σ along with the valuation of all first order and second order
variables. Thus Σ′ consists of all symbols (a, v) where a ∈ Σ is such that v(x) = 1
means that x is assigned the position i of a in the word w, while v(x) = 0 means
that x is not assigned the position of a in w. Similarly, v(X) = 1 means that
the position i of a in w belongs to the set X. Next we use quasi-event clocks for
Σ′ by assigning suitable ranking function. We partition Σ′ such that for a fixed
a ∈ Σ, all symbols of the form (a, d1, . . . , dm+n) and di ∈ {0, 1} lie in the same
partition (a determines their partition). Let ρ′ : Σ′ → N be the ranking function
of Σ′ wrt above partitioning scheme.

Let L(ψ) be the set of all words w′ over Σ′ such that the underlying word w
over Σ satisfies formula ψ along with the valuation V al. Structurally inducting
over ψ, we show that L(ψ) is accepted by a dtVPA. The cases Qa(x), µ(x, y) are
exactly as in [4]. We only discuss the new predicates here.

Consider the atomic formula Ca(x) ∈ I. We construct a dtVPA that on reading
a symbol (b, v) ∈ Σ′ with v(x) = 1 checks the constraint xa ∈ I for acceptance.
The case of Ba(x) ∈ I is similar, and the check is done on clock ya. Consider the
atomic formula θ(x) ∈ I. To handle this, we build a dtVPA that keeps pushing
symbols (a, v) onto the stack whenever a ∈ Σc, initializing the age to 0 on push.
It keeps popping the stack on reading return symbols (a′, v′), and checks whether
v′(x) = 1 and age((a′, v′)) ∈ I. It accepts on finding such a pop. The check
v′(x) = 1 ensures that this is the matching return of the call made at position x.
The check age((a′, v′)) ∈ I confirms that the age of this symbol pushed at position
x is indeed in the interval I. Negations, conjunctions and disjunctions follow
from the closure properties of dtVPA. Existential quantifications correspond to
projection by excluding the chosen variable from the valuation and renaming
the alphabet Σ′. Let M be an dtVPA constructed for ϕ(x1, . . . , xn, X1, . . . , Xm)
over Σ′. Consider ∃xi.ϕ(x1, . . . , xn, X1, . . . , Xm) for some first order variable
xi. Let Zi = (x1, . . . , xi−1, xi+1, . . . , xn, X1, . . . , Xm) by removing xi from Z.
We simply work on the alphabet Σ′i = Σ × (V al : Zi → {0, 1}m+n−1). Note
that Σ′i is partitioned exactly in the same way as Σ′. For a fixed a ∈ Σ, all
symbols (a, d1, . . . , dm+n−1) for di ∈ {0, 1} lie in the same partition. Thus,
Σ′ and Σ′i have exactly the same number of partitions, namely |Σ|. Thus,
an event clock xa = x(a,d1,...,dm+n) used in M can be used the same way
while constructing the automaton for ∃xi.ϕ(x1, . . . , xn, X1, . . . , Xm). The case of

12 Bhave et al.

∃Xi.ϕ(x1, . . . , xn, X1, . . . , Xm) is similar. Hence we obtain in all cases, a dtVPA
that accepts L(ψ) when ψ is an MSO sentence.

Automata to logic. Consider a dtVPAM = (L,Σ, Γ, L0, F,∆). Let L = {l1, . . . ln}
and Γ = {γ1, . . . , γm}. The MSO formula encoding accepting runs of dtVPA is:
∃Xl1 . . . XlnCγ1 . . . CγmRγ1 . . . Rγm ϕ(Xl1 , . . . , Xln , Cγ1 , . . . , Cγm , Rγ1 , . . . , Rγm),
where Xq denotes the set of positions in the word where the run is in loca-
tion q, Cγ , Rγ stand for the set of positions in the run where γ is pushed
and popped from the stack respectively. We assert that the starting position
must belong to Xl for some l ∈ L0. Successive positions must be connected
by an appropriate transition. To complete the reduction we list these con-
straints. For call transitions (`i, a, ψ, `j , γ) ∈ ∆c, for positions x, y, we assert

that X`i(x) ∧X`j (y) ∧Qa(x) ∧ Cγ(x) ∧
∧
b∈Σ

((∧
(xb∈I)∈ψ Cb(x) ∈ I

)
∧
(∧

(yb∈I)∈ψ Bb(x) ∈ I
))

.

For return transitions (`i, a, I, γ, ψ, `j) ∈ ∆r for positions x and y we assert that

X`i(x) ∧X`j (y) ∧Qa(x) ∧Rγ(x) ∧ θ(x)∈I ∧
∧
b∈Σ

((∧
(xb∈I)∈ψ Cb(x)∈I

)
∧
(∧

(yb∈I)∈ψ Bb(x)∈I
))
.

Finally, for local transitions (`i, a, ψ, `j) ∈ ∆l for positions x and y we assert

X`i(x) ∧X`j (y) ∧Qa(x) ∧
∧
b∈Σ

((∧
(xb∈I)∈ψ Cb(x) ∈ I

)
∧
(∧

(yb∈I)∈ψ Bb(x) ∈ I
))
. We also as-

sert that the last position of the word belongs to some Xl such that there is a
transition (call, return,local) from l to an accepting location. The encoding of all
3 kinds of transitions is as above. Additionally, we assert that corresponding call
and return positions should match, i.e. ∀x∀y µ(x, y)⇒

∨
γ∈Γ\⊥ Cγ(x) ∧Rγ(y).

These two parts together finish the proof of the main result of the paper.

Theorem 6. A language L over Σ is accepted by an dtVPA iff there is a MSO
sentence ϕ over Σ such that L(ϕ) = L.

References

1. Abdulla, P., Atig, M., Stenman, J.: Dense-timed pushdown automata. In: LICS. pp.
35–44 (2012)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

3. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class of
timed automata. TCS 211(1-2), 253–273 (1999)

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Symposium on Theory
of Computing. pp. 202–211 (2004)

5. Clemente, L., Lasota, S.: Timed pushdown automata revisited. In: LICS. pp. 738–749
(2015)

6. D’Souza, D.: A logical characterisation of event clock automata. Int. J. Found. Com-
put. Sci. 14(4), 625–640 (2003), http://dx.doi.org/10.1142/S0129054103001923

7. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: ATVA. LNCS, vol. 6252,
pp. 306–324. Springer-Verlag (September 2010)

8. Van Tang, N., Ogawa, M.: Event-clock visibly pushdown automata. In: SOFSEM
2009, LNCS, vol. 5404, pp. 558–569. Springer (2009)

